Dérivation, convexité - Spécialité

Dérivée de fonction et logarithme

Exercice 1 : Dériver ln(ax+b) (avec a,b appartenant à Q \ {0})

Soit la fonction \(f\) définie ci-dessous : \[ f: x \mapsto \operatorname{ln}\left(- \dfrac{7}{8}x - \dfrac{3}{2}\right) \]Déterminer la dérivée de \(f\).
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \( \left]-\infty;- \dfrac{12}{7}\right[ \).

Exercice 2 : Déterminer le signe de la dérivée de ln(ax + b)

Soit la fonction \(f\) définie ci-dessous : \[ f: x \mapsto \operatorname{ln}\left(-8x + 4\right) \]Déterminer le tableau de signe de la dérivée de f.
On admettra que f est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \( \left]-\infty;\dfrac{1}{2}\right[ \).

Essais restants : 2

Exercice 3 : Déterminer la dérivée d'un polynome avec un logarithme (sans composition)

Quelle est la dérivée de la fonction \(f\) ?
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \( \left]0; +\infty\right[ \) \[ f: x \mapsto -7x\operatorname{ln}\left(x\right) + 4x \]

Exercice 4 : Dériver ln(ax+b) (avec a,b appartenant à Z \ {0})

Soit la fonction \(f\) définie ci-dessous : \[ f: x \mapsto \operatorname{ln}\left(1x -4\right) \]Déterminer la dérivée de \(f\).
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \( \left]4;+\infty\right[ \).

Exercice 5 : Déterminer la dérivée d'une fonction avec un logarithme (sans composition)

Quelle est la dérivée de la fonction \(f\) ?
On admettra qu'elle est dérivable sur chaque intervalle contenu dans son domaine de définition \( D \) = \( \left]0; +\infty\right[ \) \[ f: x \mapsto \dfrac{3\operatorname{ln}\left(x\right)}{x} \]
False